Calculation of critical exponents by self-similar factor approximants

نویسنده

  • V. I. Yukalov
چکیده

The method of self-similar factor approximants is applied to calculating the critical exponents of the O(N)-symmetric φ4 theory and of the Ising glass. It is demonstrated that this method, being much simpler than other known techniques of series summation in calculating the critical exponents, at the same time, yields the results that are in very good agreement with those of other rather complicated numerical methods. The principal advantage of the method of self-similar factor approximants is the combination of its extraordinary simplicity and high accuracy. PACS: 05.70.Jk Critical point phenomena in thermodynamics, 02.30.Lt Sequences, series, and summability, 02.30.Mv Approximations and expansions

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-similar factor approximants.

The problem of reconstructing functions from their asymptotic expansions in powers of a small variable is addressed by deriving an improved type of approximants. The derivation is based on the self-similar approximation theory, which presents the passage from one approximant to another as the motion realized by a dynamical system with the property of group self-similarity. The derived approxima...

متن کامل

Quasilinear Schrödinger equations involving critical exponents in $mathbb{textbf{R}}^2$

‎We study the existence of soliton solutions for a class of‎ ‎quasilinear elliptic equation in $mathbb{textbf{R}}^2$ with critical exponential growth‎. ‎This model has been proposed in the self-channeling of a‎ ‎high-power ultra short laser in matter‎.

متن کامل

Extrapolation of power series by self-similar factor and root approximants

The problem of extrapolating the series in powers of small variables to the region of large variables is addressed. Such a problem is typical of quantum theory and statistical physics. A method of extrapolation is developed based on self-similar factor and root approximants, suggested earlier by the authors. It is shown that these approximants and their combinations can effectively extrapolate ...

متن کامل

Method of self-similar factor approximants

The method of self-similar factor approximants is completed by defining the approximants of odd orders, constructed from the power series with the largest term of an odd power. It is shown that the method provides good approximations for transcendental functions. In some cases, just a few terms in a power series make it possible to reconstruct a transcendental function exactly. Numerical conver...

متن کامل

ON QUASILINEAR ELLIPTIC SYSTEMS INVOLVING MULTIPLE CRITICAL EXPONENTS

In this paper, we consider the existence of a non-trivial weaksolution to a quasilinear elliptic system involving critical Hardyexponents. The main issue of the paper is to understand thebehavior of these Palais-Smale sequences. Indeed, the principaldifficulty here is that there is an asymptotic competition betweenthe energy functional carried by the critical nonlinearities. Thenby the variatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008